cancel
Showing results for 
Search instead for 
Did you mean: 
Reply
justlogmein
Frequent Visitor

What is the 'proper' way to arrange my data and what is the code required?

I have a table where nearly all the headers are dates. This data source changes dynamically and the dates will also change, so if my queries (such as Change Type) reference the current headers I will get errors when the data source changes.  However, the rows in the Person column may also change, so I can't use them as headers either. So I am looking for a robust way to arrange the table so I don't get errors (I'm thinking Person, Date and Value as the column names?) I'd like to know if there are any better ways of doing this, and what the code for doing so would be.

 

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("VZQ9blwxDITvsrWL1R8llUnpIMgBDBeLZIsAuw4QV769lx8zfEhDvCeJ5AxnpJeX05f7x+nptM1DfYS1PZwfofhXHf519v82H2GUR7CmM5U81lSle5XpofqJkaWs+6/XG1X5zdcKPZZnNJ0jA0CTXa9s3qc7ijYSqf8ui43XpwefX5e7J1T1qV54g6IJVBCCRk3gw5RHN05371G878oyMQIHaX7YtrBEzyMDpFtVOny9yvLK00OZqtKKpsGu+eHZYfR8uV/f1RIYfWTfoubdd+tWbvQ1NbKhr5Z6zK3miIwey6tMnYgx7a5Sa2TuWVQBDvNGaNl3a5LQ2jPWnNHX37fbh4SPjSmr0GMWTW3mrDakp4wI5o1pvG8vKtCXCjAcJMNXTA03AQgPIbInlC7FsO4WFQptLZMdMJmqQefbx+0q5MDqLVGalA/5h8zGxI57NH0Np4YqRV6Zh11D+qW5zdQBVLulDZlWldb/DO/AsfAW1GaaIDb0jxGEnv9c3t6u0sZkp3BrT5ZbLEOurIkB+UWVcHrRuSGDMCVItbzTgF1ppLjxJn2w9+CLO1ilRni8CnHc+xazdkLfrzfNBB0ZUUuDcpW4/iNlAQ5Y8zmaSwxHWi4gNZmq56MxBf+YP/3NUsqqAKWWRoU/5mUwAaAGCmfz4/3n5e9/hivpitqFB527As8mUI5raunreB6Oh3toAKQx3cOcvAe8+XgJ3On6eFM5xtoSvXjuLU3FE3F6ff0E", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Person = _t, #"19/03/2021" = _t, #"20/03/2021" = _t, #"21/03/2021" = _t, #"22/03/2021" = _t, #"23/03/2021" = _t, #"24/03/2021" = _t, #"25/03/2021" = _t, #"26/03/2021" = _t, #"27/03/2021" = _t, #"28/03/2021" = _t, #"29/03/2021" = _t, #"30/03/2021" = _t, #"31/03/2021" = _t, #"1/04/2021" = _t, #"2/04/2021" = _t, #"3/04/2021" = _t, #"4/04/2021" = _t, #"5/04/2021" = _t, #"6/04/2021" = _t, #"7/04/2021" = _t, #"8/04/2021" = _t, #"9/04/2021" = _t, #"10/04/2021" = _t, #"11/04/2021" = _t, #"12/04/2021" = _t, #"13/04/2021" = _t, #"14/04/2021" = _t, #"15/04/2021" = _t, #"16/04/2021" = _t, #"17/04/2021" = _t, #"18/04/2021" = _t, #"19/04/2021" = _t, #"20/04/2021" = _t, #"21/04/2021" = _t, #"22/04/2021" = _t, #"23/04/2021" = _t, #"24/04/2021" = _t, #"25/04/2021" = _t, #"26/04/2021" = _t, #"27/04/2021" = _t]),
    #"Changed Type" = Table.TransformColumnTypes(Source,{{"Person", type text}, {"19/03/2021", Int64.Type}, {"20/03/2021", Int64.Type}, {"21/03/2021", Int64.Type}, {"22/03/2021", Int64.Type}, {"23/03/2021", Int64.Type}, {"24/03/2021", Int64.Type}, {"25/03/2021", Int64.Type}, {"26/03/2021", Int64.Type}, {"27/03/2021", Int64.Type}, {"28/03/2021", Int64.Type}, {"29/03/2021", Int64.Type}, {"30/03/2021", Int64.Type}, {"31/03/2021", Int64.Type}, {"1/04/2021", Int64.Type}, {"2/04/2021", Int64.Type}, {"3/04/2021", Int64.Type}, {"4/04/2021", Int64.Type}, {"5/04/2021", Int64.Type}, {"6/04/2021", Int64.Type}, {"7/04/2021", Int64.Type}, {"8/04/2021", Int64.Type}, {"9/04/2021", Int64.Type}, {"10/04/2021", Int64.Type}, {"11/04/2021", Int64.Type}, {"12/04/2021", Int64.Type}, {"13/04/2021", Int64.Type}, {"14/04/2021", Int64.Type}, {"15/04/2021", Int64.Type}, {"16/04/2021", Int64.Type}, {"17/04/2021", Int64.Type}, {"18/04/2021", Int64.Type}, {"19/04/2021", Int64.Type}, {"20/04/2021", Int64.Type}, {"21/04/2021", Int64.Type}, {"22/04/2021", Int64.Type}, {"23/04/2021", Int64.Type}, {"24/04/2021", Int64.Type}, {"25/04/2021", Int64.Type}, {"26/04/2021", Int64.Type}, {"27/04/2021", Int64.Type}})
in
    #"Changed Type"

 

1 ACCEPTED SOLUTION
Fowmy
Super User IV
Super User IV

@justlogmein 

Please check this version. This way it will be very useful for your analysis

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("VZQ9blwxDITvsrWL1R8llUnpIMgBDBeLZIsAuw4QV769lx8zfEhDvCeJ5AxnpJeX05f7x+nptM1DfYS1PZwfofhXHf519v82H2GUR7CmM5U81lSle5XpofqJkaWs+6/XG1X5zdcKPZZnNJ0jA0CTXa9s3qc7ijYSqf8ui43XpwefX5e7J1T1qV54g6IJVBCCRk3gw5RHN05371G878oyMQIHaX7YtrBEzyMDpFtVOny9yvLK00OZqtKKpsGu+eHZYfR8uV/f1RIYfWTfoubdd+tWbvQ1NbKhr5Z6zK3miIwey6tMnYgx7a5Sa2TuWVQBDvNGaNl3a5LQ2jPWnNHX37fbh4SPjSmr0GMWTW3mrDakp4wI5o1pvG8vKtCXCjAcJMNXTA03AQgPIbInlC7FsO4WFQptLZMdMJmqQefbx+0q5MDqLVGalA/5h8zGxI57NH0Np4YqRV6Zh11D+qW5zdQBVLulDZlWldb/DO/AsfAW1GaaIDb0jxGEnv9c3t6u0sZkp3BrT5ZbLEOurIkB+UWVcHrRuSGDMCVItbzTgF1ppLjxJn2w9+CLO1ilRni8CnHc+xazdkLfrzfNBB0ZUUuDcpW4/iNlAQ5Y8zmaSwxHWi4gNZmq56MxBf+YP/3NUsqqAKWWRoU/5mUwAaAGCmfz4/3n5e9/hivpitqFB527As8mUI5raunreB6Oh3toAKQx3cOcvAe8+XgJ3On6eFM5xtoSvXjuLU3FE3F6ff0E", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Person = _t, #"19/03/2021" = _t, #"20/03/2021" = _t, #"21/03/2021" = _t, #"22/03/2021" = _t, #"23/03/2021" = _t, #"24/03/2021" = _t, #"25/03/2021" = _t, #"26/03/2021" = _t, #"27/03/2021" = _t, #"28/03/2021" = _t, #"29/03/2021" = _t, #"30/03/2021" = _t, #"31/03/2021" = _t, #"1/04/2021" = _t, #"2/04/2021" = _t, #"3/04/2021" = _t, #"4/04/2021" = _t, #"5/04/2021" = _t, #"6/04/2021" = _t, #"7/04/2021" = _t, #"8/04/2021" = _t, #"9/04/2021" = _t, #"10/04/2021" = _t, #"11/04/2021" = _t, #"12/04/2021" = _t, #"13/04/2021" = _t, #"14/04/2021" = _t, #"15/04/2021" = _t, #"16/04/2021" = _t, #"17/04/2021" = _t, #"18/04/2021" = _t, #"19/04/2021" = _t, #"20/04/2021" = _t, #"21/04/2021" = _t, #"22/04/2021" = _t, #"23/04/2021" = _t, #"24/04/2021" = _t, #"25/04/2021" = _t, #"26/04/2021" = _t, #"27/04/2021" = _t]),
    #"Unpivoted Other Columns" = Table.UnpivotOtherColumns(Source, {"Person"}, "Attribute", "Value"),
    #"Changed Type" = Table.TransformColumnTypes(#"Unpivoted Other Columns",{{"Value", Int64.Type}, {"Attribute", type date}},"en-gb"),
    #"Renamed Columns" = Table.RenameColumns(#"Changed Type",{{"Attribute", "Date"}})
in
    #"Renamed Columns"

 

Did I answer your question? Mark my post as a solution! and hit thumbs up


Subscribe and learn Power BI from these videos

Website LinkedIn PBI User Group

View solution in original post

1 REPLY 1
Fowmy
Super User IV
Super User IV

@justlogmein 

Please check this version. This way it will be very useful for your analysis

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("VZQ9blwxDITvsrWL1R8llUnpIMgBDBeLZIsAuw4QV769lx8zfEhDvCeJ5AxnpJeX05f7x+nptM1DfYS1PZwfofhXHf519v82H2GUR7CmM5U81lSle5XpofqJkaWs+6/XG1X5zdcKPZZnNJ0jA0CTXa9s3qc7ijYSqf8ui43XpwefX5e7J1T1qV54g6IJVBCCRk3gw5RHN05371G878oyMQIHaX7YtrBEzyMDpFtVOny9yvLK00OZqtKKpsGu+eHZYfR8uV/f1RIYfWTfoubdd+tWbvQ1NbKhr5Z6zK3miIwey6tMnYgx7a5Sa2TuWVQBDvNGaNl3a5LQ2jPWnNHX37fbh4SPjSmr0GMWTW3mrDakp4wI5o1pvG8vKtCXCjAcJMNXTA03AQgPIbInlC7FsO4WFQptLZMdMJmqQefbx+0q5MDqLVGalA/5h8zGxI57NH0Np4YqRV6Zh11D+qW5zdQBVLulDZlWldb/DO/AsfAW1GaaIDb0jxGEnv9c3t6u0sZkp3BrT5ZbLEOurIkB+UWVcHrRuSGDMCVItbzTgF1ppLjxJn2w9+CLO1ilRni8CnHc+xazdkLfrzfNBB0ZUUuDcpW4/iNlAQ5Y8zmaSwxHWi4gNZmq56MxBf+YP/3NUsqqAKWWRoU/5mUwAaAGCmfz4/3n5e9/hivpitqFB527As8mUI5raunreB6Oh3toAKQx3cOcvAe8+XgJ3On6eFM5xtoSvXjuLU3FE3F6ff0E", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Person = _t, #"19/03/2021" = _t, #"20/03/2021" = _t, #"21/03/2021" = _t, #"22/03/2021" = _t, #"23/03/2021" = _t, #"24/03/2021" = _t, #"25/03/2021" = _t, #"26/03/2021" = _t, #"27/03/2021" = _t, #"28/03/2021" = _t, #"29/03/2021" = _t, #"30/03/2021" = _t, #"31/03/2021" = _t, #"1/04/2021" = _t, #"2/04/2021" = _t, #"3/04/2021" = _t, #"4/04/2021" = _t, #"5/04/2021" = _t, #"6/04/2021" = _t, #"7/04/2021" = _t, #"8/04/2021" = _t, #"9/04/2021" = _t, #"10/04/2021" = _t, #"11/04/2021" = _t, #"12/04/2021" = _t, #"13/04/2021" = _t, #"14/04/2021" = _t, #"15/04/2021" = _t, #"16/04/2021" = _t, #"17/04/2021" = _t, #"18/04/2021" = _t, #"19/04/2021" = _t, #"20/04/2021" = _t, #"21/04/2021" = _t, #"22/04/2021" = _t, #"23/04/2021" = _t, #"24/04/2021" = _t, #"25/04/2021" = _t, #"26/04/2021" = _t, #"27/04/2021" = _t]),
    #"Unpivoted Other Columns" = Table.UnpivotOtherColumns(Source, {"Person"}, "Attribute", "Value"),
    #"Changed Type" = Table.TransformColumnTypes(#"Unpivoted Other Columns",{{"Value", Int64.Type}, {"Attribute", type date}},"en-gb"),
    #"Renamed Columns" = Table.RenameColumns(#"Changed Type",{{"Attribute", "Date"}})
in
    #"Renamed Columns"

 

Did I answer your question? Mark my post as a solution! and hit thumbs up


Subscribe and learn Power BI from these videos

Website LinkedIn PBI User Group

View solution in original post

Helpful resources

Announcements
PBI_User Group Leader_768x460.jpg

Manage your user group events

Check out the News & Announcements to learn more.

Get Ready for Power BI Dev Camp

Microsoft named a Leader in The Forrester Wave

Microsoft received the highest score of any vendor in both the strategy and current offering categories.

Get Ready for Power BI Dev Camp

Power BI Dev Camp - September 30th, 2021

Mark your calendars and join us for our next Power BI Dev Camp!

PowerPlatform 768x460.png

Microsoft Learn

Check out our new Discover Your Career Path blog post series and get all the details.

Top Kudoed Authors