cancel
Showing results for 
Search instead for 
Did you mean: 
Reply
julioagh
Frequent Visitor

Comparing datetimezones to group table by condition

Hi I´m trying to compare two datetimezones from different columns on same table in order to determine how many row does that set have per ID. I have this data

 

IDDateTimeZone 1DateTimeZone 2
12021-05-28T09:00:56.6630000-05:002021-06-03T08:52:39.6570000-05:00
12021-05-28T09:00:56.6630000-05:002021-05-27T08:52:39.6570000-05:00
22021-02-01T15:53:56.0860000-05:002021-02-02T15:53:56.0860000-05:00
22021-02-01T15:53:56.0860000-05:002021-02-03T15:53:56.0860000-05:00
22021-02-01T15:53:56.0860000-05:002021-02-04T15:53:56.0860000-05:00
32021-02-01T15:53:56.0860000-05:002021-01-29T15:53:56.0860000-05:00
42020-10-15T19:07:57.8600000-05:002020-10-16T19:07:57.8600000-05:00
42020-10-15T19:07:57.8600000-05:002020-10-14T19:07:57.8600000-05:00
42020-10-15T19:07:57.8600000-05:002020-10-17T19:07:57.8600000-05:00

 

So 

Set 1 (DateTimeZone 1 < DateTimeZone 2)

IDDateTimeZone 1DateTimeZone 2
12021-05-28T09:00:56.6630000-05:002021-06-03T08:52:39.6570000-05:00
22021-02-01T15:53:56.0860000-05:002021-02-02T15:53:56.0860000-05:00
22021-02-01T15:53:56.0860000-05:002021-02-03T15:53:56.0860000-05:00
22021-02-01T15:53:56.0860000-05:002021-02-04T15:53:56.0860000-05:00
42020-10-15T19:07:57.8600000-05:002020-10-16T19:07:57.8600000-05:00
42020-10-15T19:07:57.8600000-05:002020-10-17T19:07:57.8600000-05:00

 

Set 2 (DateTimeZone 2< DateTimeZone 1 )

IDDateTimeZone 1DateTimeZone 2
12021-05-28T09:00:56.6630000-05:002021-05-27T08:52:39.6570000-05:00
32021-02-01T15:53:56.0860000-05:002021-01-29T15:53:56.0860000-05:00
42020-10-15T19:07:57.8600000-05:002020-10-14T19:07:57.8600000-05:00

 

So what I want to get is

Set 2

IDDateTimeZone 2< DateTimeZone 1DateTimeZone 2 > DateTimeZone 1
111
203
310
412

 

Thanks, 

 

Any help or suggestion would be really appreciated

 

Julio

 

 

1 ACCEPTED SOLUTION
AlB
Super User III
Super User III

@julioagh 

So you want to do it in PQ? Place the following M code in a blank query to see the steps.

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("rdFJCsMwDEDRu2QdGQ2WPJzDu5D7XyNKDaGFuqEmRtqIz9t42xZa1tcyMgEqcG5YKmJVC2aC/vzsh6sxQGmYq3KVEkzTW7OvM6I36U7kq2ZAaqRV5RQx2xfRGx4106I8LsZf4qnJXyIBlzsx9hqBfLSR/0yqmkKPP8Te2KiZFuPjYhqK+wE=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [ID1 = _t, ID2 = _t, #"DateTimeZone 1" = _t, #"DateTimeZone 2" = _t]),
    #"Changed Type" = Table.TransformColumnTypes(Source,{{"ID1", Int64.Type}, {"ID2", Int64.Type}, {"DateTimeZone 1", type datetimezone}, {"DateTimeZone 2", type datetimezone}}),
    #"Grouped Rows" = Table.Group(#"Changed Type", {"ID1", "ID2"}, {{"DateTimeZone 2< DateTimeZone 1", each Table.RowCount(Table.SelectRows(_, each [DateTimeZone 2]<[DateTimeZone 1]))}, {"DateTimeZone 1< DateTimeZone 2", each Table.RowCount(Table.SelectRows(_, each [DateTimeZone 1]<[DateTimeZone 2]))}}),
    #"Changed Type1" = Table.TransformColumnTypes(#"Grouped Rows",{{"DateTimeZone 2< DateTimeZone 1", Int64.Type}, {"DateTimeZone 1< DateTimeZone 2", Int64.Type}})
in
    #"Changed Type1"

SU18_powerbi_badge

Please accept the solution when done and consider giving a thumbs up if posts are helpful. 

Contact me privately for support with any larger-scale BI needs, tutoring, etc.

 

View solution in original post

4 REPLIES 4
AlB
Super User III
Super User III

@julioagh 

So you want to do it in PQ? Place the following M code in a blank query to see the steps.

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("rdFJCsMwDEDRu2QdGQ2WPJzDu5D7XyNKDaGFuqEmRtqIz9t42xZa1tcyMgEqcG5YKmJVC2aC/vzsh6sxQGmYq3KVEkzTW7OvM6I36U7kq2ZAaqRV5RQx2xfRGx4106I8LsZf4qnJXyIBlzsx9hqBfLSR/0yqmkKPP8Te2KiZFuPjYhqK+wE=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [ID1 = _t, ID2 = _t, #"DateTimeZone 1" = _t, #"DateTimeZone 2" = _t]),
    #"Changed Type" = Table.TransformColumnTypes(Source,{{"ID1", Int64.Type}, {"ID2", Int64.Type}, {"DateTimeZone 1", type datetimezone}, {"DateTimeZone 2", type datetimezone}}),
    #"Grouped Rows" = Table.Group(#"Changed Type", {"ID1", "ID2"}, {{"DateTimeZone 2< DateTimeZone 1", each Table.RowCount(Table.SelectRows(_, each [DateTimeZone 2]<[DateTimeZone 1]))}, {"DateTimeZone 1< DateTimeZone 2", each Table.RowCount(Table.SelectRows(_, each [DateTimeZone 1]<[DateTimeZone 2]))}}),
    #"Changed Type1" = Table.TransformColumnTypes(#"Grouped Rows",{{"DateTimeZone 2< DateTimeZone 1", Int64.Type}, {"DateTimeZone 1< DateTimeZone 2", Int64.Type}})
in
    #"Changed Type1"

SU18_powerbi_badge

Please accept the solution when done and consider giving a thumbs up if posts are helpful. 

Contact me privately for support with any larger-scale BI needs, tutoring, etc.

 

View solution in original post

julioagh
Frequent Visitor

Thank you so much!

julioagh
Frequent Visitor

Thanks for the response @AlB . And sorry for the misleading first example of data I tried your solution and create a visual table but is not grouping the results. Its making the count but is assigned to every row of the visual table. And I want to the count its made grouping by ID. Perhaps another option could be making it on code with the Table. Group command but I don´t know how to do it exactly. 

 

I get to something like this.

 

ID1ID2DateTimeZone 1DateTimeZone 2
112021-05-28T09:00:56.6630000-05:002021-06-03T08:52:39.6570000-05:00
112021-05-28T09:00:56.6630000-05:002021-05-27T08:52:39.6570000-05:00
122021-02-01T15:53:56.0860000-05:002021-02-02T15:53:56.0860000-05:00
122021-02-01T15:53:56.0860000-05:002021-02-03T15:53:56.0860000-05:00
122021-02-01T15:53:56.0860000-05:002021-02-04T15:53:56.0860000-05:00
232021-02-01T15:53:56.0860000-05:002021-01-29T15:53:56.0860000-05:00
242020-10-15T19:07:57.8600000-05:002020-10-16T19:07:57.8600000-05:00
242020-10-15T19:07:57.8600000-05:002020-10-14T19:07:57.8600000-05:00
242020-10-15T19:07:57.8600000-05:002020-10-17T19:07:57.8600000-05:00

 

So what I want to achieve is this

 

ID1ID2DateTimeZone 2< DateTimeZone 1DateTimeZone 2 > DateTimeZone 1
1111
1203
2310
2412

 

 

But I dont know hot make the grouping by two columns and accesing correctly to datimezone data

 

 

 

Table.Group(Table1, {"ID1","ID2"}, {"DT2>DT1", each Table.RowCount(Table.SelectRows(Table1,[DateTimeZone2]>[DateTimeZone1]))})

 

 

 

 

Thanks for your help. Maybe I need another approach

Julio

AlB
Super User III
Super User III

Hi @julioagh 

1. Place Table1[Id] in a table visual. Make sure it is set to "Don't summarize"

2. Add these measures to the visual

DTZ1<DTZ2 = 
COUNTROWS(FILTER(Table1, Table1[DateTimeZone 2] < Table1[DateTimeZone 1])) + 0
DTZ2<DTZ1 = 
COUNTROWS ( FILTER ( Table1, Table1[DateTimeZone 1] < Table1[DateTimeZone 2] ) ) + 0

 

SU18_powerbi_badge

Please accept the solution when done and consider giving a thumbs up if posts are helpful. 

Contact me privately for support with any larger-scale BI needs, tutoring, etc.

 

Helpful resources

Announcements
PBI_User Group Leader_768x460.jpg

Manage your user group events

Check out the News & Announcements to learn more.

MBAS on Demand

2021 Release Wave 2 Plan

Power Platform release plan for the 2021 release wave 2 describes all new features releasing from October 2021 through March 2022.

Get Ready for Power BI Dev Camp

Microsoft named a Leader in The Forrester Wave

Microsoft received the highest score of any vendor in both the strategy and current offering categories.

R2 (Green) 768 x 460px.png

Microsoft Dynamics 365 & Power Platform User Professionals

DynamicsCon is a FREE, 4 half-day virtual learning experience for 11,000+ Microsoft Business Application users and professionals.

Top Kudoed Authors