cancel
Showing results for 
Search instead for 
Did you mean: 
Reply
Sellgren7
Frequent Visitor

Translate Qlik aggr expression to DAX?

Hello

 

Is it possible to translate below expression to DAX or is there another way of achieving the outcome in PBI? I want to translate a table from Qlik into a matrix visual but i cant figure out how to get the aggr equivalent.

 

timestamp(
min({<ColumnX -= {0}>}aggr(
min({<ColumnX -= {0}>} ColumnN,', ')
,ColumnZ,ColumnY, ColumnX))
)

 

BR Tommy

2 REPLIES 2
Sellgren7
Frequent Visitor

Thanks for the quick reply, but i dont fully understand how this will aggregate over several columns? I only see Column1 = ColumnX and Column2 = ColumnN. 

lazurens2
Frequent Visitor

The Qlik aggr function, aggregates a field by a set of fields, I will try to translate into natural language your measure but it's better to provide a expected result to be more accurate 

 

timestamp(           -- format into time stamp
min(                      -- get the minimum value of .. 

{<ColumnX -= {0}>} -- set analysis to filter out ColumnX = 0,

 

aggr(
min({<ColumnX -= {0}>} ColumnN,', ')
,ColumnZ,ColumnY, ColumnX)) -- we get field ColumnN, where row of ColumnX = 0 are filtered out aggregated by ColumnZ,ColumnY, ColumnX
)

 

if I try to translate into dax these components : 

 

 

AggMinValueMeasure = 

VAR AggrMin = SUMMARIZE (
ADDCOLUMNS(
	CALCULATETABLE (
SUMMARIZE (
'Table',
'Table'[Column1],
'Table'[Column2]
),
'Table'[Column1] <> 0
)
,
	"Column1-1", 'Table'[Column1],
	"Column2-2",'Table'[Column2]
),
	"_Min", Min('Table'[Column2])
)

Return AggrMin

 

 

And then format the measure into timestamp in the graphical UI.

Hope this helps. 

 

Helpful resources

Announcements
Vote for T-Shirt Design

Power BI T-Shirt Design Challenge 2023

Vote for your favorite t-shirt design now through March 28.

March 2023 Update3

Power BI March 2023 Update

Find out more about the March 2023 update.

March Events 2023A

March 2023 Events

Find out more about the online and in person events happening in March!